TalentedApps

We put the Talent in Applications

  • Authors

  • Blog Stats

    • 579,539 hits
  • Topics

  • Archives

  • Fistful of Talent Top Talent Management blogs
    Alltop, all the top stories

Yes, We are All Individuals

Posted by Mark Bennett on February 12, 2008


Number 6: What do you want?
Number 2: We want information.
Number 6: Whose side are you on?
Number 2: That would be telling, we want information, information, information.
Number 6: You won’t get it.
Number 2: By hook or by crook, we will.
Number 6: Who are you?
Number 2: The new Number 2.
Number 6: Who is Number 1?
Number 2: You are Number 6.
Number 6: I am not a Number, I am a free man!

The Prisoner (1967-1968)
We know that part of being able to improve business results through talent is being able to measure talent in the first place. There are challenges not only in being able to do that, but also in the resistance to doing that. A recently published book, “How to Measure Anything: Finding the Value of Intangibles in Business” by Douglas W. Hubbard, covers three common objections to the measurement of intangibles. The first, and perhaps only truly valid one from a business perspective, is the obvious economic one where the cost of measurement exceeds the benefit. The second is based on the common misunderstanding of statistics that it can be easily manipulated (“Lies-damned lies-and statistics”), which can be addressed through better understanding of statistics, probabilities, and risk. The third, and perhaps most relevant to the topic of talent management, is the ethical objection, based on the perception that it is dehumanizing and threatening to measure certain things about people, such as their value to the company (current and future), their risk of loss, and other touchy subjects that are often brought up in HR predictive analytics.

Hubbard argues that decisions are still being made regardless and that making those decisions under intentional ignorance could be worse, so measurements need to still be made. Of course, the question is which measurements are really useful and pertinent to the decision. That at least gets the ethical discussion going in the right direction. In fact, it bolsters the argument that:
  1. The decision should be connected to achieving business goals (i.e. the impact on success).
  2. The decision in turn should be driving what measurements are needed.
If the measurements are pertinent to the decision being made and the decision helps achieve business goals, there is at least a logical purpose to the measurements and therefore the benefits can be weighed against the ethical issues. This is better than mindlessly gathering data for its own sake, especially if the data sheds unflattering light on the population being measured.

What gets people upset is if the measurements have an error factor (and almost all do), then a member of that population runs the risk of being described unfairly or worse yet, completely false. In addition, if there are correlations between the measurements made on a person and some undesirable outcome, condition, or risk factor for the population, then people are afraid of being pigeonholed, ejected, or otherwise unfairly labeled.

The problem is not in the measurements themselves, assuming they meet the criteria of being pertinent, but the way in which they are acted upon, which is usually management’s fault. For instance, a company might find that certain factors correlate highly with employee theft across a sample size of the company’s workforce. Used properly, that would help the company develop effective programs, policies, etc. that would lower the amount of employee theft. Used improperly, managers would target or otherwise treat employees differently who, while they might exhibit some or even all of these factors, never stole from the company. The point the managers missed was that the measurements and correlations were useful tools to see if the programs and policies were effective and that’s where it ends, period. They are not about predicting any one individual’s behavior, nor set them apart as “high risk”, etc. That’s the marvelous thing about people. They’re all different and managers have to remember that fact when they study population data. There is no shortcut in managing people.

3 Responses to “Yes, We are All Individuals”

  1. Meg Bear said

    Sounds like the plot line of Minority report. Good point about how we should use the data to the most effective results.

  2. I’m Doug Hubbard, the author of the book you just mentioned. I was notified of your post by Google Alert – this is turning out to be invaluable to me as an author. First, thanks for the free exposure! Second, I just wanted to clarify the points the book makes about measurement. I really cover three commo “can’ts” and three common “shouldn’ts” about measurement. The three you mention are reallythe common reasons we “shouldn’t” measure something, of which only the first one is potentially valid (as you stated, correctly, the economic reason).

    The three main reason we hear that somethign *can’t* be measured – all of which are misconceptions – are summarized as Concept, Object, and Method (.COM if it helps you remember). The concept of measurement has to do with the fact that most people misunderstand how measurement is defined in an empirical scientific sense. It means uncertainty reduction as opposed to finding an exact number. The Object of measurement has to do with how things seem immeasurable only because the thing to be measured (i.e. the object) is ambiguously defined. Once they define what they really mean including observable consequences then it becomes measureable. The third reason, methods, has to do with a lack of understanding on the variety of measurement methods that address almost all of the typical measurement “problems” managers seem to run into.

    Regarding your comment that measurement errors are often not considered by management when making sensitive assessments of employees (drug tests, predictive models of theft, etc.), I couldn’t agree more. If managers understood that the number of false positives in a drug test can be very large compared to – in most cases – the small fraction of employees with a drug problem, I doubt they would be so quick to act on it. Again, proper analysis of the measurement is key.

    Thanks again for the post and I hope you enjoy the rest of the book!

    Doug Hubbard

  3. […] the network contribute to it in a wide variety of ways and it doesn’t serve any purpose to try to force everyone to be the same – that defeats the very usefulness of the network […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: